1. A positive integer is called a *palindrome* if its representation in the decimal system is the same when read from left to right and from right to left. For a given positive integer K of not more than 109, write the value of the smallest palindrome larger than K to output. Numbers are always displayed without leading zeros.

### Input

The first line contains integer t, the number of test cases. Followed by t lines containing integers K.

### Output

For each K, output the smallest palindrome larger than K in a new line.

**Sample Input. Sample Output**

2 818

808 2222

2133

def left_greater(number, index, sub):

return int(number[index-sub::1]) > int(number[index:])

def palindrome(number, index, length):

return number[:index] + number[length-index::1]

def increment_index(number, index, length, add):

number = str(int(number[:index+add]) + 1) + number[index+add:]

return palindrome(number, index, length)

def next_palindrome(number, length):

index = int(length//2)

if length % 2 != 0:

if number[index] <= number[index – 1]:

if left_greater(number, index, 1):

return palindrome(number, index, length)

else:

return increment_index(number, index, length, 1)

else:

return increment_index(number, index, length, 0)

else:

if left_greater(number, index, 1):

return palindrome(number, index, length)

else:

return increment_index(number, index, length, 0)

def all_9(number, length):

for n in range(length):

if number[n] != “9”:

return False

return True

test_cases = int(input())

for t in range(test_cases):

input_num = input()

num_length = len(input_num)

if all_9(input_num, num_length):

print(int(input_num) + 1)

else:

print(next_palindrome(input_num, num_length))

Note: This is the given code and needs to be fixed.